| TWO-WAY TWO-LANE HIGHV | VAY SEGMENT WORKSHEET | —•
:
: | |--|--|---| | General Information | Site Information | | | Analyst J. Buchholz | Highway River Rood | •••• | | Agency or Company UNF | From/To | | | Date Performed 9 16/06 | Jurisdiction | | | Analysis Time Period Peich How | Analysis Year 2006 | | | ☐ Operational (LOS) ☐ Design (v _p) | ☐ Planning (LOS) ☐ Planning (v _p) | | | Input Data | | <u></u> | | Shoulder width 2 ft | ☑ Class I highway ☐ Class II highway Terrain ☑ Level , ☐ Rolling | | | Lane width II ft | | Y / | | Lane width | Directional split 80 / 20 | 640 000 | | Shoulder width 2 ft | Show North Arrow Peak-hour factor, PHF 0.89 | $-\frac{640}{180\times4} = 0.89$ | | Shoulder width | "Trucks and buses, P _T 25" % | 100 % | | Segment length, L, 25 mi | → % Recreational vehicles, P _R 10 % | | | The state of s | % No-passing zone | | | | Access points/mi/mi | La him required | | Average Travel Speed | > 755 < [200] | no jderaban required | | Grade adjustment factor, f _G (Exhibit 20-7) | 1.00 | | | Passenger car equivalents for trucks, E _T (Exhibit 20-9) | 1.2 | | | Passenger-car equivalents for RVs, E _R (Exhibit 20-9) | 1.0 | - 1 + 0.25(1.2-1) + 0.10(1-1) | | Heavy-vehicle adjustment factor, f_{HV} $f_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)}$ | 0.952 | | | Two-way flow rate, $^{1}v_{p}$ (pc/h) $v_{p} = \frac{V}{PHF \cdot f_{G} \cdot f_{HV}}$ | 755 | 0.89 (1,00 × 6.952) | | v _p * highest directional split proportion ² (pc/h) | 755 x 80% = 604 | 0.81 (1,00)(0.13-) | | Free-Flow Speed from Field Measurement | Estimated Free-Flow Speed | _ | | Field measured speed, S _{FM} mi/h | Base free-flow speed, BFFS 50 + 5 = 55 mi/r | | | Observed volume, V _f veh/h | Adj. for lane width and shoulder width, f _{LS} (Exhibit 20-5) 3.0 mi/r | 1 | | Free-flow speed, FFSmi/h
FFS = S_{FM} + 0.00776 $\left(\frac{V_f}{f_{WV}}\right)$ | Adj. for access points, f _A (Exhibit 20-6) | | | FFS - SFM + 0.00170 (fHV) | Free-flow speed, FFS mi/f FFS = BFFS - f_{LS} $f_{$ | リン | | Adj. for no-passing zones, f _{np} (mi/h) (Exhibit 20-11) | 2.4 | _ | | Average travel speed, ATS (mi/h) ATS = FFS $-0.00776v_p - f_{np}$ | 50.75-0.00776(755) -2.4-(42.5) | 1 La required | | Percent Time-Spent-Following | → ? ?? ? < | 1:00 : no ideration required | | Grade adjustment factor, f _G (Exhibit 20-8) | 1.00 | | | Passenger-car equivalents for trucks, E _T (Exhibit 20-10) | | <u> </u> | | Passenger-car equivalents for RVs, E _R (Exhibit 20-10) | 1.0 | 1 -11 1 +0 10/1-1 | | Heavy-vehicle adjustment factor, f_{HV} $f_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)}$ | 0.976 | - 1 + 0,25 (1,1-1) 10,1001 13 | | Two-way flow rate, v_p (pc/h) $v_p = \frac{V}{PHF \cdot f_G \cdot f_{HV}}$ | 777/ | - 1 + 0,25(1.1-1)+0.10(1-1)
- 640
- 6.84 (1.00)(0.9%) | | v _p * highest directional split proportion ² (pc/h) | 737 x 86% = 590 | 0.84 (1.00)(0.470) | | Base percent time-spent-following, BPTSF (%) | 1 0 00(00 0)(0.70) | | | BPTSF = 100(1 - p ^{-0.000879v_p)} Adj. for directional distribution and no-passing zone, f _{d/np} (%) | $ 100(1-e^{-0.008811(7)}) = 47.7\%$ | | | (Exhibit 20-12) | 2 18.3% | | | Percent time-spent-following, PTSF (%) PTSF = BPTSF + f _{d/np} | 47.7% + 18.3% = 66.0% | | | Level of Service and Other Performance Measures | | - | | Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) | 42.5 m/h -> LOSD & 66.0% | | | Volume to capacity ratio, $v/c = \frac{v_p}{3.200}$ | 253/3200 = 0.24 | | | Peak 15-min vehicle-miles of travel, VMT ₁₅ (veh-mi) | (- \///\) | | | VMT ₁₅ = 0.25L ₁ (V/PHF) | 10.897 | | | Peak-hour vehicle-miles of travel, VMT ₆₀ (veh-mi) VMT ₆₀ = V * L _t | (46 × 25 = 16,000 | | | Peak 15-min total travel time, TT_{15} (veh-h) $TT_{15} = \frac{VMT_{15}}{ATS}$ | 4494/42.5 = 105.7 | | | Notes 1. If $v_0 \ge 3,200 \text{ pc/h}$, terminate analysis—the LOS is F. | 3200 Oh. | , AA495 | | 1. If $v_p \ge 3,200$ pc/h, terminate analysis—the LOS is F. 2. If highest directional split $v_p \ge 1,700$ pc/h, terminate analysis—the LOS is F. | 604 4 1700 O.h. | na-ra |